Lohia Mechatronik kabra plastic extrusion machinery Used Compounding Line for Masterbatches Lohia-tape-plant Hitco Mamta reliance-polymers
Lohia Mechatronik
kabra plastic extrusion machinery
Used Compounding Line for Masterbatches
Lohia-tape-plant
Hitco
Mamta
reliance-polymers
Technical Papers Plastics
Scientist develop next-generation recyclable plastic

Scientist develop next-generation recyclable plastic

Plastics contain various additives, like fillers, flame retardants or pigments. Hence few plastics can be recycled without loss in performance or aesthetics. A team of researchers at the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) has designed a recyclable plastic that, like a Lego playset, can be disassembled into its constituent parts at the molecular level, and then reassembled into a different shape, texture, and color again and again without loss of performance or quality. The new material, called poly(diketoenamine), or PDK, was reported in the journal Nature Chemistry

Lead author Peter Christensen, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry says “We have discovered a new way to assemble plastics that takes recycling into consideration from a molecular perspective.”

Christensen was part of a multidisciplinary team led by Brett Helms, a staff scientist in Berkeley Lab’s Molecular Foundry.
All plastics, from water bottles to automobile parts, are made up of large molecules called polymers, which are composed of repeating units of shorter carbon-containing compounds called monomers.

According to the researchers, the problem with many plastics is that the chemicals added to make them useful – such as fillers that make a plastic tough, or plasticizers that make a plastic flexible – are tightly bound to the monomers and stay in the plastic even after it’s been processed at a recycling plant.
During recycling mixed plastics with different chemical compositions, it’s hard to predict which properties it will inherit from the original plastics.

Unlike conventional plastics, the monomers of PDK plastic could be recovered and freed from any compounded additives simply by dunking the material in a highly acidic solution. (Credit: Peter Christensen et al./Berkeley Lab)

This inheritance of unknown and therefore unpredictable properties is a challenge in recycling mixed plastic consumer waste. It is difficult to upcycle, to make a new, higher quality product.

Recycling plastic one monomer at a time


This time-lapse video shows a piece of PDK plastic in acid as it degrades to its molecular building blocks – monomers. The acid helps to break the bonds between the monomers and separate them from the chemical additives that give plastic its look and feel. (Credit: Peter Christensen/ Berkeley Lab)

The researchers want to divert plastics from landfills and the oceans by incentivizing the recovery and reuse of plastics, which could be possible with polymers formed from PDKs. “With PDKs, the immutable bonds of conventional plastics are replaced with reversible bonds that allow the plastic to be recycled more effectively,” Helms said.

Unlike conventional plastics, the monomers of PDK plastic could be recovered and freed from any compounded additives simply by dunking the material in a highly acidic solution. The acid helps to break the bonds between the monomers and separate them from the chemical additives that give plastic its look and feel.

“We’re interested in the chemistry that redirects plastic lifecycles from linear to circular,” said Helms. “We see an opportunity to make a difference for where there are no recycling options.” That includes adhesives, phone cases, watch bands, shoes, computer cables, and hard thermosets that are created by molding hot plastic material.

研究人员首次发现令人兴奋的中国保监会ular property of PDK-based plastics when Christensen was applying various acids to glassware used to make PDK adhesives, and noticed that the adhesive’s composition had changed. Curious as to how the adhesive might have been transformed, Christensen analyzed the sample’s molecular structure with an NMR (nuclear magnetic resonance) spectroscopy instrument. “To our surprise, they were the original monomers,” Helms said.

After testing various formulations at the Molecular Foundry, they demonstrated that not only does acid break down PDK polymers into monomers, but the process also allows the monomers to be separated from entwined additives.

Next, they proved that the recovered PDK monomers can be remade into polymers, and those recycled polymers can form new plastic materials without inheriting the color or other features of the original material – so that broken black watchband you tossed in the trash could find new life as a computer keyboard if it’s made with PDK plastic. They could also upcycle the plastic by adding additional features, such as flexibility.

Moving toward a circular plastic future

PDK plastics are a “circular” material whose original monomers can be recovered for reuse for as long as possible, or “upcycled” to make a new, higher quality product. (Credit: Peter Christensen et al./Berkeley Lab)

The researchers believe that their new recyclable plastic could be a good alternative to many nonrecyclable plastics in use today.

“We’re at a critical point where we need to think about the infrastructure needed to modernize recycling facilities for future waste sorting and processing,” said Helms. “If these facilities were designed to recycle or upcycle PDK and related plastics, then we would be able to more effectively divert plastic from landfills and the oceans. This is an exciting time to start thinking about how to design both materials and recycling facilities to enable circular plastics,” said Helms.

The researchers next plan to develop PDK plastics with a wide range of thermal and mechanical properties for applications as diverse as textiles, 3D printing, and foams. In addition, they are looking to expand the formulations by incorporating plant-based materials and other sustainable sources.


Source: LawrenceBerkeleyLaboratory

Back to Articles
{{comment.Name}}made a post.
{{comment.DateTimeStampDisplay}}

{{comment.Comments}}

COMMENTS

0

There are no comments to display. Be the first one to comment!

*

Name Required.

*

Email Id Required.

Email Id Not Valid.

*

Mobile Required.

Email ID and Mobile Number are kept private and will not be shown publicly.
*

Message Required.

Click to Change image Refresh Captcha

recycle-plastic

plastic-road

recycle-plastic-bags